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Abstract. We describe our submission to the ECML/PKDD 2015 Model
Reuse with Bike Rental Station Data Discovery Challenge, where the
objective is to predict the number of available bikes in every bike rental
stations 3 hours in advance and the main task is to reuse the models
learned on 200 “old” stations in order to improve prediction performance
on the 75 “new” stations. It exploits a selective approach, together with
automatic reuse model selection from the old station models.

1 Introduction

Regression techniques are widely used in scenarios such as the retail market,
stock exchange, decision support systems, among others. However, it is still a big
challenge to create techniques that perform good predictions fully automatically,
requiring often prior knowledge of the data to improve the accuracy of such
applications.

Thus, an obstacle commonly encountered in the application of regression
techniques is the difference between the collected data, which are used for train-
ing a predictive model to the real scenario in which such models are applied,
resulting prediction errors. This is a scenario that seen recurring, in many cases,
because it is not always able to collect data from the real context to construct
a specific model for it. This makes it important to study strategies for re-use
regression models in different scenarios, adapting their use as needed in search
of more assertive predictions.

In this context it is in this work, which aims to provide a solution to the
challenge posed by the ECML / PKDD 2015 called “ MoReBikeS: Model Reuse
with Bike Rental Station data”1. The challenge is to predict, with three hours
in advance, the number of bicycles available for bike rental stations. The main
challenge of the problem lies in finding the best way to re-use regression models
built using historical data of another set of stations.

The work is divided as follows: the Section 2 explains briefly the problem
posed by the challenge of ECML / PKDD 2015; the Section 3 presents the
strategies proposed here to solve this problem; the Section 4 presents the results
obtained and the Section 5 presents the conclusions. and future work.

1 http://reframe-d2k.org/Main Page



2 The Problem

The challenge “ MoReBikeS: Model Reuse with Bike Rental Station data ”,
which was presented as one of the challenges of the ECML / PKDD 2015, is to
provide with 3 hours in advance the number of bicycles available in a bicycle
rental station. This prediction has real practical applications, one of them for the
benefit of the rental company, since predicting that stations will be completely
filled or emptied, the company can relocate the bikes to better serve users. An-
other application benefits the user, who can know in advance in which station
it can make the lease or return of bicycles, noting the likely number of bikes or
vacancies, respectively.

In the scenario presented in the challenge there are 275 stations, being 200
old stations (1, 2, . . . , 200), for which were collected various data every hour over
a period of two years, and 75 other new stations (201, 202, . . . , 275), which were
only collected data from one month. Considering the static characteristics, ge-
ographical position and the number of docks of each station was available. For
the time series data collected every hour, there are data related to time (date,
time, day of week, holiday, etc.), weather (wind speed and direction, tempera-
ture, humidity, etc.) and bicycles available in the station (number of bikes, bike
number 3 hours, bicycle average to date, etc.).

For each of the 200 old stations, based on historical data, it was built and
made available 6 linear regression models, which consider different attributes to
predict the number of available bikes. Table 1 displays the models available for
each station(columns) and attributes of the stations used by them (lines).

Table 1. Features and their use in each of the models.
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bikes 3h ago 3 3 3 3 3 3

short profile 3h 3 3 3 3

diff bikes

short profile bikes 3 3 3 3

temperature.C 3 3 3

full profile 3h 3 3 3 3

diff bikes

full profile bikes 3 3 3

The features shown in Table 1 are included among the data of the historical
series of the stations. In other words, a record of the series contains all those
features. To understand, here is a brief description of some of them:



– bikes: number of present bikes at the station at the time (this is the attribute
to be predicted for the new stations);

– bikes 3h ago: number of present bikes at the station three hours ago;
– full profile bikes: arithmetic mean of the attribute bikes of the entire

history of the station, at the same time of the week;
– full profile 3h diff bikes: arithmetic average value calculated bikes−

bikes 3h ago in the entire history of the station, at the same time of the
week;

– short profile bikes and short profile 3h diff bikes: Similar to the
full profile bikes and full profile 3h diff bikes attributes, but con-
sider only the last 4 records with the same time of the week, and not the
entire history;

The challenge is to find the best way to select, among this total of 1200
models, which will be used and how to combine them to predict how many bikes
there in each of the 75 new stations, 3 hours in advance.

3 Proposed Strategies

The focus of this work was to find a simple and effective strategy to predict the
number of bicycles of the new stations using the pre-existing models of others.
To achieve this goal, it considered the following premise:

Bike stations have similar characteristics with others that are geographically
close.

Thus, from a previous knowledge of the proposed issue, it was noted that
nearby stations have similar characteristics, such as climate, topography and
culture, which can be crucial to find out the number of users using the rental
service bicycles [1].

Therefore, it was decided to use a dissimilarity metric widely used in clas-
sification and clustering techniques: the Euclidean distance. When using this
metric can be considered any attributes of the objects to be compared, but here
it was decided to use only the geographical attributes of the station (latitude
and longitude). Thus, the distance (dissimilarity) between two stations is given
by Formula 1.

EuclideanDist(StationA, StationB) =
√

(latA − latB)2 + (longA − longB)2

(1)
Moreover, it was not considered that there would be an ideal model among the

existing ones, would perform good predictions for all new stations. Therefore, the
strategies used in this study sought to find, within a set of pre-existing models,
which would be most suitable to the new station. It was considered that the most
appropriate models for a given station would be those of the closest stations to
her, obtained using Formula 1.

Therefore, two strategies were used to predict the number of bicycles of new
stations, which will be described below.



3.1 Strategy 1: Use models of nearest neighbor station

The main idea of this strategy is to seek more similar station (with the small-
est distance) the new station. Having possession of that station, two different
approaches were used, which are described below.

The first approach is to use a single pre-defined model for predictions. Con-
sidering that M is the set of models available for each station, should be informed
which model Mi to be used. After finding the nearest station, the model Mi of
this station will be used for the predictions of the new station Snew. The pro-
cedure of this approach is described in Algorithm 1. In this and the following,
the variable instance is the station record of the Snew you want to predict the
number of bicycles.

Algorithm 1 Closest Station Single Model Strategy

1: function ClosestStationSingleModel(Snew,Mi, instance)
2: closestStation← findClosestStation(Snew)
3: model← closestStation.getModel(Mi)
4: prediction← model.predict(instance)
5: prediction← AdjustPrediction(prediction, Snew)
6: return prediction
7: end function

As you may notice a prediction adjustment technique is performed as indi-
cated in the Algorithm 2, to avoid being provided more bikes that fit in the new
station, as well as negative predictions. Such adjustment strategy was used in
all strategies and approaches used in this work.

Algorithm 2 Adjust Predictions

1: function AdjustPrediction(prediction, Snew)
2: if prediction > Snew.maxDocks then
3: prediction← Snew.maxDocks
4: else if prediction < 0 then
5: prediction← 0
6: end if
7: return prediction
8: end function

The second approach is to, rather than to use only one model, consider all
models available from the nearest station. Thus, the prediction of the new station
Snew consists in the aggregation of the predictions for each model of the nearest
station. Three forms of aggregation of the results were used: average, median
and average no outliers. This approach is described in Algorithm 3.

In the Algorithm 3 must be pre-established the form of aggregation of the
results (mean, median or average no outlliers). Thus, the algorithm proceeds as



Algorithm 3 Closest Station Multiple Models Strategy

1: function ClosestStationMultiModels(Snew, aggrStrategy, instance)
2: closestStation← findClosestStation(Snew)
3: predictions← [ ]
4: models← closestStation.getAvailableModels()
5: for model in models do
6: prediction← model.predict(instance)
7: prediction← AdjustPrediction(prediction, Snew)
8: predictions[model]← prediction
9: end for

10: return predictions.aggregateResults(aggrStrategy)
11: end function

in the previous approach, but finding the next station, stores the predictions
of each model in a vector (predictions). After this step, such predictions are
combined using the informed aggregation strategy (aggrStrategy).

3.2 Strategy 2: Use of models from neighboring stations within a
radius

The idea of this strategy assumes that it may be more advantageous to consider
more than a neighborhood element, instead of using a single neighboring station.
Thus, given a new station Snew, the stations whose distance from Snew is smaller
than a radius r are obtained. The models obtained from these stations are used
to make the predictions and the results are aggregated using a pre-established
strategy (average, median or average no outliers). From this view, two approaches
were used, as described below.

The first approach is to use all models of the selected stations. This strategy
is described in Algorithm 4, where the results of the predictions of the selected
models are stored in a matrix predictions, so that it can be aggregated. It can be
seen that, if no station is found within r, the Algorithm 3 is applied, so the models
of the nearest station are used. In this case, the predictions are aggregated using
the strategy “average no outliers”, with which the best results were obtained for
this situation.

Another approach to this strategy is to use only a pre-established model
of each selected station as shown in Algorithm 5. As can be noted, the only
difference of approach used in Algorithm 5 is that only the models of type mi

are considered for each station within the radius r to make the predictions.
The Figure 1 shows, briefly, the idea of the second strategy, which was used

in this work.
As can be noted, for this strategy, in both approaches, it is necessary to

inform the radius to be used by the algorithm. This parameter is crucial for
the effectiveness of the strategy. Therefore, to define the radius was made an
exhaustive search in the range [0.001, 0.01], which was defined based on running
tests of the algorithm using the available training data.



Algorithm 4 Closest Stations at Radius Multiple Models Strategy

1: function StationsAtRadiusMultiModels(Snew, r, aggrStrategy, instance)
2: closestStations← findStationsAtRadius(Snew, r)
3: if closestStations.length > 0 then
4: for closeStation in closestStations do
5: models← closeStation.getAvailableModels()
6: for model in models do
7: prediction← model.predict(instance)
8: prediction← AdjustPrediction(prediction, Snew)
9: predictions[closeStation.id,model]← prediction

10: end for
11: end for
12: return predictions.aggregateResults(aggrStrategy)
13: else
14: return ClosestStationMultiModels(

Snew, AV GWITHOUT EXTREMES , instance)
15: end if
16: end function

Algorithm 5 Closest Stations at Radius Single Model Strategy

1: function StationsAtRadiusSingleModel(Snew, r, aggrStrategy,Mi, instance)
2: closestStations← findStationsAtRadius(Snew, r)
3: if closestStations.length > 0 then
4: for closeStation in closestStations do
5: model← closestStation.getModel(Mi)
6: prediction← model.predict(instance)
7: prediction← AdjustPrediction(prediction, Snew)
8: predictions[closeStation.id]← prediction
9: end for

10: return predictions.aggregateResusts(aggrStrategy)
11: else
12: return ClosestStationMultiModels(

Snew, AV GWITHOUT EXTREMES , instance)
13: end if
14: end function



Fig. 1. Closest Stations at Radius with Multiple Models Strategy.

4 Results

In the evaluation of the proposed strategies, the historical series of 1 month
available for the 75 new stations was used as test dataset. The data consists in
745 records per station, totalizing 55875 records. Thus, predictions were made to
such records and we calculated the mean absolute error (MAE), as the Formula
2. Considering n records to be predicted, predictedi represents the i-th predicted
value and expectedi its expected value.

MAE =
1

n

n∑
i=1

|predictedi − expectedi| (2)

In tests, the two proposed strategies were used, using each of the presented
linear regression models separately, and also using all models together aggre-
gating their values (using aggregation strategies mentioned above). The table
2 summarizes the errors obtained using each approach. It can be seen that the
strategy 2 achieved better results in all configurations. The model “short full”
was the one that obtained the best results for both strategies.

For the implementation of the strategy 2, as described above, we need the r
parameter, which specifies the maximum distance between stations whose mod-



Table 2. Obtained results in each strategy using each of the models.

Estratégia Estratégia 1 Estratégia 2
r=0.0061

short 2.8329 2.8087

full 2.8123 2.7719

short full 2.8049 2.7694

short temp 2.8885 2.8762

full temp 2.8696 2.8397

short full temp 2.8450 2.8170

All(Average) 2.8247 2.7998

All(Median) 2.8248 2.7986

All(Average without extremes) 2.8241 2.7978

els will be used. The value used was r = 0.0061, which was obtained through
exhaustive testing. The image 2 shows the mean absolute error values according
to different values of r that were tested, taking in account that the tests were
done considering all models.

The best configuration obtained by experiments was the use of Strategy 2,
with the model “short full”, using the parameter r = 0.0061. This was the
setting whose results were submitted to challenge “MoReBikeS: Model Reuse
with Bike Rental Station data” in the ECML/PKDD 2015. Note that the results
presented here differ from those released by the challenge organization because
the test suite used for official submission did not contain actual results, and his
error could be calculated only by the challenge organization.

5 Conclusions

In this work we present two solution strategies for the challenge “MoReBikeS:
Model Reuse with Bike Rental Station data”. Both started from the premise
that nearby stations may have similar behaviors in regard to bicycle rental.

The good results of Strategy 2 shows that it is possible to make predictions
reusing models built from the historical data of other stations, and that simi-
lar stations may have a similar behavior. The good performance of the model
“short full” shows that profiles calculated from historical data can be a good
indicator for the predictions.

The strength of the presented strategies is that they can be applied in other
contexts, as will seek to use the most appropriate models according to the sce-
nario presented and their characteristics. Also, this is a simple strategy, easy
implementation and low computational cost.
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Fig. 2. Mean absolute error obtained according to the radius used in the Strategy 2.


