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ABSTRACT 

This paper describes the methodology used for 

ECMLPKDD 2015 Discovery Challenge on Model 

Reuse with Bike Rental Station Data (MoReBikeS). 

The challenge was to predict the number of bikes in 

the new stations three hours in advance. Initially, the 

data for the first 25 new stations (station 201 to 225) 

was provided and various prediction methods were 

utilized on these test stations and the results were 

updated every week. Then the full test data for the 

remaining 50 stations (station 226 to 275) was given 

and the prediction was made using the best method 

obtained from the small test challenge. Several 

methods like Ordinary Least Squares, Poisson 

Regression, and Zero Inflated Poisson Regression 

were tried. But reusing the linear models learnt from 

the old stations (station 1 to 200) with lowest mean 

absolute error proved to be the simple and effective 

solution. 

Keywords: Mean Absolute Error (MAE), Prediction, 

Model Reuse. 

1 INTRODUCTION  

Majority of the knowledge intensive application areas 

have a high chance of operating context variation. The 

reuse of the learnt knowledge might play a critical 

importance in generalizing the notion of the operating 

context. In this ECMLPKDD 2015 Discovery 

Challenge, the bike rental stations located in Valencia 

are considered. The objective is to predict the number 

of bikes available in each new stations (Station 201 to 

275) three hours in advance. There are at least two use 

cases given for such predictions [1]. First, a user plans 

to rent (or return) a bike in 3 hour time and wants to 

choose a bike station which is not empty (or full). 

Second, the company wants to avoid situations where 

a station is empty or full and therefore needs to move 

bikes between stations. The data set consisted of all the 

necessary details like location, time, weather and 

profile of bike availability for model building and 

prediction. 

2 METHODOLOGY 

In order to make a successful prediction, the 

information about the current status in the station, the 

weather condition and the time period at which the 

stations would be empty or full were considered along 

with the profile of bike availability in each station 

which was learnt from the historical information. This 

is because the quality of the prediction can be the 

increased by collecting more historical information. 

Considering all the above given information, various 

methods like Ordinary Least Squares, Poisson 

Regression and Zero Inflated Poisson Regression were 

tried.  

Apart from the above information, the linear models 

developed for old stations (station 1 to 200) based on 

the training dataset and their respective MAE values 

were available. After trying out various methods for 

prediction, the idea of reusing these models learnt 

from the old stations (station 1 to 200) to predict the 

number of bikes in the new stations (station 201 to 

275) provided the best solution based on the MAE 

value. The selection of best models for the new 

stations and prediction of results is discussed in this 

section. 

2.1 Model Extraction and Prediction 

There were 7 base models available and in addition to 

that, 6 trained models were provided for each of the 

200 old stations. As the deployment data for stations 

201 to 275 was given, all the given linear models were 

utilized for predicting the number of bikes in each of 

the stations 201 to 275. The model with less Mean 

Absolute Error (MAE) was selected as the best model 
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for a particular station. This process continued for 

selecting the best model for all the new stations (201 

to 275).  

In some cases, the prediction results were negative or 

it exceeded the maximum limit of the bikes that can be 

accommodated in a station. To overcome this problem, 

a constraint was added in such a way that whenever 

the result is negative, the predicted value is reset to 

zero and whenever the result exceeded the maximum 

limit, the value is reset to the number of docks at that 

station. So, this helped in reducing the MAE value 

further. Also, in some stations, the extraction 

algorithm came up with two or more models with the 

same MAE values. In those cases, only the first model 

was selected. 

After the extraction algorithm selected the best models 

for each of the new stations based on the given criteria, 

the number of bikes in each station for the leaderboard 

data set were predicted using the extracted models. 

The same set of constraints were applied to avoid 

negative values and over fitting during prediction. The 

R software was used for model extraction and 

prediction. The MAE values for the small test 

challenge using this strategy was 2.502 and the MAE 

values for the full test challenge turned out to be 2.067.  

3 OTHER METHODS TRIED FOR 

PREDICTION 

Initially, before reusing the given linear models, new 

models were built with the deployment data for the 

stations 201 to 275. The different approaches used for 

building the models and their results are discussed in 

this section. The Minitab and R software is used for 

this purpose. As the test statistics and graphs for all 

stations cannot be included in this paper, a sample 

station data is chosen for illustration and 

understanding. Similar procedures were adopted in 

building models for all the other stations.  

3.1 Ordinary Least Squares Method 

After cleaning the given dataset, the first model was 

built using all the regressors under consideration. A 

thorough analysis of this full model, including residual 

analysis and multicollinearity check was done. Also, 

the scatter plot was used to study the relationship 

between the regressor and response variable. From the 

model summary, there was severe collinearity problem 

between the regressors. Also, the test statistics showed 

that only few variables significantly contributed to the 

model. The scatter plot of those variables is shown in 

Figure 1. The variable ‘y’ denotes the number of bikes. 

The variables x20, x21, x23 and x16 denotes bikes 3 

hours ago, full profile bikes, short profile bikes and 

temperature respectively. The coefficient of 

determination value was not satisfactory and the 

PRESS (prediction sum of squares) statistic was large, 

making the model doubtful for prediction purposes. 

 

Figure 1: Scatter plot for the initial model 

The residual plot for the initial full model is shown in 

Figure 2. The normal probability plot shows some 

deviations at the upper and lower tails. This might be 

due to the reason of existence of many zeroes in the 

response variable. The residual plot (deleted residuals 

versus the fitted values) shows a significant double 

bow pattern, violating the assumption of constant 

variance. Also, there are some outliers noticed from 

the residual versus observation plot.  

 

Figure 2: Residual plot of initial full model 
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To explore about the outliers, the values of ordinary 

residuals, studentized residuals, leverage (HI1), 

Cook’s distance, DFFIT were collected. Though some 

outliers were observed, no influential points were 

noticed which was confirmed from the cook’s 

distance. Since the reason for the unusual observations 

were not explicit, these observations were not 

removed and included for modelling.  

In order to identify the regressors that were 

contributing to the model, the subset regression was 

done. The Mallows Cp and R-squared values were used 

in determining the best set of regressors. Care was 

taken to choose less number of regressors with low Cp 

and high R-squared value. Also, the stepwise 

regression, forward selection, backward elimination 

techniques were used. The alpha values for entering 

and removing the variables were set at 0.1 and 0.2 

respectively. Finally, the regressors that significantly 

contributed to the model were identified. 

After selecting the best subset of regressors, the 

analysis was carried out once again. The 

multicollinearity problem disappeared which was 

confirmed from the Variance Inflation Factor (VIF) 

values (less than 5). The PRESS statistic showed 

drastic improvement. Also, the significance of the 

regressors was examined.  

The residual plot for subset regression is shown in 

Figure 3. Though the model improved slightly, there 

is a problem with normality assumption. The residual 

plot does not show any improvement as the double 

bow pattern still exists. This strongly suggested a need 

for variance stabilizing transformation of the variables 

along with the addition of polynomial and interaction 

terms for further improvement.  

 

 

Figure 3: Residual plot of subset regression 

All the possible sets of transformations (from square 

root to inverse) were tried on the response and 

regressor variables. Also, the models with polynomial 

terms and interaction terms were built. Finally, the 

logarithmic transformation of the regressor variables 

was tried and regressed against the response. This 

logarithmic transformation was a good choice for the 

model since the data involved historical information.  

The ANOVA table provided all the necessary test 

statistics. The regressors that contributed significantly 

to the model were identified. There was an evidence 

of lack of fit for some models but it did not affect 

much. The PRESS statistic was low but the R-squared 

value dropped further. There were no traces of 

multicollinearity and the model seemed perfect. 

The residual plot for final model is shown in Figure 4. 

The normal probability plot still needs some 

improvement but the variance is much stabilized. 

There is no pattern evident from the residual plot.  

 

Figure 4: Residual plot of final model 



4 
 

3.2 Poisson Regression  

In order to improve the model further and make it 

useful for prediction, the Poisson Regression was 

tried. The reason for choosing Poisson regression was 

that the response variable involved counting the 

number of bikes, which was discrete. The log link was 

particularly attractive for Poisson regression as it 

ensured that all of the predicted values of the response 

variable will be nonnegative.  

The initial full model was fitted with Poisson 

regression. This model seemed to be good when 

compared to the final model built using the ordinary 

least square method. There were some regressors 

which were not significant, noticed after examining 

the test statistic and also their regression coefficients 

were negligible.   

The Poisson regression along with the stepwise 

selection of regressors was done in order to obtain the 

best subset of regressors. The final set of regressors 

seemed to be almost the same as in case of ordinary 

least squares method. The test statistic summary was 

used to understand the significance of regressors. The 

R-squared value improved slightly for this initial 

model. The Akaike Information Criteria (AIC) was 

also high, which denoted the expected entropy of the 

model was maximum. The key insight provided by the 

AIC value is similar to R-squared adjust and Mallows 

Cp. The multicollinearity problem was studied from 

the VIF values. The standard residuals, studentized 

residuals, cook’s distance, leverage values were 

examined 

The Goodness of fit test provided the value of 

deviance with its significance. The ratio of deviance to 

the degree of freedom value was near to unity. The 

Pearson chi squared test value was also small with 

larger p-value indicating that the fit was significant. 

Also, the partial deviance test indicated that all the 

selected regressors were significant to the model. 

The residual plot for the Poisson regression is shown 

in Figure 5. The upper tail of the normal probability 

plot seems to be good but there is some problem with 

the lower tail. Also, the assumption of constant 

variance is violated, observed from the plot of deleted 

residuals versus fitted values. There is a nonlinear 

pattern observed in this plot indicating a need for 

transformation and higher order terms.  

 

Figure 5. Residual plot for initial model of Poisson 

Regression 

Various transformations were tried out and the final 

combination of variables was found. The natural log 

link function was used and the logarithmic 

transformation of the regressors proved to be good. All 

the test statistics were examined once again. Finally a 

better model when compared to all the previous 

models was obtained.  

The deviance table provided all the necessary test 

statistic. There were no traces of lack of fit. The error 

values were low and no traces of multicollinearity was 

observed from VIF values. The Confidence Interval 

limits were shrunken, which was good. The R-squared 

value was good and the model seemed to be perfect. 

The residual plot for the transformed model is shown 

in Figure 6. 

 

Figure 6. Residual plot after transformation 
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The upper tail of the normal probability plot is good 

but there is still a problem at the lower tail. But the 

assumption of constant variance is satisfied as 

observed from the plot of deleted residuals versus 

fitted values. The values of the residuals are 

distributed within a range of 4 (+2 to -2). There is no 

pattern observed from the plot and the model has 

improved a lot when compared to the previous models.  

Only thing that troubled much is the lower tail of the 

normal probability plot. The presence of excess zeroes 

in the response than usual observations could have 

resulted in larger residuals in the prediction. The 

existence of these excess zeroes also caused trouble in 

fitting the model. So, in order to overcome this 

problem, Zero Inflated Poisson Regression was tried. 

3.3 Zero Inflated Poisson Regression  

As there were excess of zeroes when examining the 

response data, there arose a doubt that some of the 

zeroes might be inflated. So, in order to solve this 

problem, the Zero Inflated Poisson Regression was 

tried. The glm2, ggplot and pscl packages were used 

for zero inflated poisson regression in R software. 

Finally two models were generated, one for the count 

model and other for the inflated zeroes.  

The best subset of regressors were selected and the 

model was built and analyzed. The pearson residual 

was low. The R-squared value was similar to poisson 

regression and also prediction sum of squares statistic 

was small relative to the other methods. Apart from 

that, the log likelihood values were large enough with 

good significance, indicating that one or more of the 

regressors in the subset contributed significantly to the 

model. There was no evidence of lack of fit and 

multicollinearity.  The count model seemed to fit the 

data well. From the zero inflated model, the various 

factors that contributed towards inflation of zeroes 

were identified.  

The normal probability plot (Q-Q plot) and the 

residual plot was studied. The normal probability plot 

improved further when compared to the previous 

methods. The residual plot did not have any problem 

apart from some outliers as shown in Figure 7. 

 

Figure 7. Deviance Residual plot of initial model 

To improve the model further, transformation of the 

variables was done and the results of the transformed 

model was studied. The results obtained after the 

transformation and addition of interaction terms 

improved the model further. All the test statistics 

similar to the poisson regression model were checked. 

The normal probability plot and the residual plot is 

shown in Figures 8 and 9 respectively. The Zero 

Inflated Poisson model had only less number of terms 

and found to fit the given data well. The validation of 

regression models is discussed in the next section. 

 

Figure 8. Normal probability plot of the 

transformed model 



6 
 

 

Figure 9. Deviance Residual plot of the 

transformed model 

4 VALIDATION OF REGRESSION 

MODELS 

After the final model is built, it has to be validated to 

check whether the model is adequate for prediction. 

Model validation is directed towards determining if 

the model will function successfully in its intended 

operating environment.  

Initially the new models were built based on the 

deployment data for the month of October 2014. As 

the data for the next month was not available, data 

splitting technique was used for validation. But the 

prediction capability of the model for November 2014 

was still doubtful by this method of validation. Also, 

the results of the small test challenge were not 

satisfactory. 

So, the validation approach was modified. As the 

training dataset for the stations 1 to 10 were provided, 

the above mentioned model building approaches were 

tried on the training dataset for October 2013 and 

MAE values were calculated by predicting the bikes 

for November 2013. This method of validation seemed 

to be a good approach and it revealed some interesting 

facts. The model without transformation and addition 

of interaction terms had low MAE values when 

compared to a model with many terms. The model 

with large number of terms fitted the given data well 

but in case of prediction it was overfitting the data. 

Also, the leaderboard results of the small test data 

supported this claim. The MAE values for the 

prediction using models from OLS method, Poisson 

Regression and Zero Inflated Poisson Regression were 

2.724, 3.068 and 2.774 respectively. The MAE value 

for the models with transformation and interaction 

terms was larger than the baseline value of 3.288. So 

the models built by transforming the regressors and 

adding interaction terms did not work well for 

predicting the bikes in this challenge. 

Even though these methods worked well, their MAE 

values were still larger than the MAE values obtained 

from reusing the old models, which was 2.502. So, 

reusing the models seemed to provide better results as 

they were obtained from the training data sets of the 

stations. So, this method was selected to predict the 

number of bikes in the full test data.  

5 RESULTS AND DISCUSSIONS 

Finally, the idea of reusing the linear models built from 

the old stations was better than building new models 

for the given deployment data. This was obvious 

because, the old models were obtained from the 

training dataset with data collected over two years, but 

the deployment data was just for a month.  

Though R-squared values increased after transforming 

the regressors and including interaction terms, the 

model was not suitable for prediction, which can be 

confirmed from the MAE values of small test 

challenge. As the number of terms increased, there 

was a risk of overfitting. The model with simpler terms 

worked well for this challenge. Also, the models built 

using the training data predicted the results better than 

the newly built models with limited data. This 

indicated that the models should be robust in order to 

account for variations in the data. Even though the 

models were built for some other stations, they seem 

to predict well for new stations than the models built 

using only the deployment data of new stations. Also, 

a good validation approach should be used for 

choosing the best models.   

One more approach that seemed to work was 

modelling of error values. This was carried out in order 

to reduce further variation in the selected model. This 

was done by collecting the error values from fitting 
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each new station data by reusing the models from old 

stations. These error values were treated as response 

variable and regressed against the new station 

variables to build a model. Now, the model selected 

from the old stations along with the model created 

from the error values were combined to form a new 

model for the station. In addition to this, Lasso 

Regression was tried but these methods were not 

included for predicting the full test set in this 

challenge. Also, rounding the values affected the MAE 

values. In most cases, the MAE values decreased after 

rounding the results. But, for some cases, rounding the 

values did not have much effect.  

Thus, it is understood that the reuse of the learnt 

knowledge can play a critical importance in 

generalizing the notion of the operating context. 
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